Parabolic Harnack inequality and local limit theorem for percolation clusters

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Harnack Inequality and Local Limit Theorem for Percolation Clusters

We consider the random walk on supercritical percolation clusters in Z . Previous papers have obtained Gaussian heat kernel bounds, and a.s. invariance principles for this process. We show how this information leads to a parabolic Harnack inequality, a local limit theorem and estimates on the Green’s function.

متن کامل

Growth Theorems and Harnack Inequality for Second Order Parabolic Equations

A general approach to both divergence (D) and non-divergence (ND) second order parabolic equations is presented, which is based on three growth theorem. These growth theorems look identical in both cases (D) and (ND). They allow to prove the Harnack inequality and other related facts by general arguments, which do not depend on the structure (divergence or nondivergence) of equations. In turn, ...

متن کامل

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

Harnack Inequality for Time-dependent Linearized Parabolic Monge-ampère Equation

We prove a Harnack inequality for nonnegative solutions of linearized parabolic Monge-Ampère equations −t φt − tr((Dφ)Du) = 0, in terms of a variant of parabolic sections associated with φ, where φ satisfies λ ≤ −φt detDφ ≤ Λ and C1 ≤ −φt ≤ C2.

متن کامل

On a Parabolic Harnack Inequality for Markov Chains

For continuous time Markov chains on a countable state space, we derive a parabolic Harnack inequality using probabilistic methods. We derive some consequences of this inequality for the compactness of parabolic (i.e. spacetime harmonic) functions of the process.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2009

ISSN: 1083-6489

DOI: 10.1214/ejp.v14-587